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Abstract

Classification is a task central to many machine learning problems. In
this paper we examine two Bayesian network classifiers, the naive Bayes
and the noisy-or models. They are of particular interest because of their
simple structures. We compare them on two dimensions: expressive power
and ability to learn.

As it turns out, naive Bayes, noisy-or, and logistic regression classifiers
all have equivalent expressiveness. We show mathematical derivations of
how to transform a classifer in one model into the other two.

These classifiers differ on their ability to learn though. We conducted
an experiment confirming the intuition that naive Bayes performs better
than noisy-or when the data fits its independence assumptions, and vice
versa. However, we still do not have a clear set of criteria for determining
under exactly what conditions would each classifier excel.

Further study of the strenghts and weaknesses of each classifier should
provide deeper insight on how to improve the current models. One possible
extension would be to combine the naive Bayes and noisy-or model so that
the network will more closely depict the actual relationship between the
attributes.

1 Introduction

Classification has applications in many different fields including biology [11],
information retrieval [23, 24, 32], national security [1], spam filtering [3], etc. It
is a basic task in performing data analysis or pattern recognition. The main goal
of classification is to construct a function that will correctly assign instances of
events or objects to their respective classes. Each instance is described by a
number of attributes, which can have discrete or continuous values. Building
such functions, or classifiers, automatically from labeled datasets is central to
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Figure 1: Fully connected Bayesian network

machine learning. There have been many different approaches to the problem
including using decision trees, decision graphs, decision lists, neural networks,
support vector machines, etc.

A particular type of classifier that has been gaining popularity among com-
puter scientists in the last 20 years is called the Bayesian network classifier. As
the name implies, these classifiers all use Bayesian networks to represent the
relationships between the attributes and the class label. The term Bayesian
networks was first coined by Pearl in 1985 [29]. It refers to a type of model that
uses directed acyclic graphs (DAGs) and conditional probability tables (CPTs)
to represent causal or temporal relationships between the nodes of the graphs.
The graph represents the qualitative component of the network whereas the ta-
bles represent the quantitative component of the network. Bayesian networks
find their origins in Thomas Bayes’s paper of 1763 where he introduced the
first definition of conditional probability, the Bayes ratio formula. However, it
was not until 1980’s that Bayesian networks and classifiers start to appear as
applications for machine learning.

Before we continue our discussion about Bayesian networks, we will first
define some notations that will be used throughout this paper. All uppercase
symbols (i.e., A,B,C) refer to single random variables. All boldface symbols
(i.e., X) refer to vectors of random variables. Lowercase symbols (i.e., a, b, c)
and lowercase boldface symbols (i.e., x) refer to values of single variables and
vectors of random variables, respectively. We will often omit variable names,
for example writing Pr(a) instead of Pr(A = a) for the probability of A = a.
Since we will deal mostly with binary variables in this paper, we will use A or a
to denote A = 1 or A = true and ¬A,A or ¬a, a to denote A = 0 or A = false.

Bayesian network is powerful because it can represent exponentially-sized
probability distributions compactly and we can perform inference on these prob-
abilities without explicitly constructing them. Each node in the DAG represents
a particular variable we are interested in, and each edge represents a direct in-
fluence between two nodes. The CPTs give numerical values to these direct in-
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fluences. Perhaps counterintuitively though, it is the missing edges in the DAG
that are the most important because they imply conditional independences.

Definition 1.1. Given random sets of variables X, Y, Z, we say X is condi-
tionally independent of Y given Z, if and only if

Pr(X | Y,Z) = Pr(X | Z) whenever Pr(Y,Z) 6= 0

In words, learning the value of Y does not provide additional information about
X, once we know Z

Knowing these independences allow us to essentially ignore the variables that
do not affect the probability distributions of the variables we are interested in.
In general, Bayesian networks can model any situation. A trivial network for
any problem would be a completely connected graph as shown in Figure 1. In
such networks, no independences can be assumed and every variable can affect
the values of all the other variables. As a result, we are usually interested in
minimal networks where removing any edges in the networks would create more
independences than specified by the problem.

Even though a well-built Bayesian network can give a very accurate model of
a problem, they can be difficult to come by. Usually a mix of expert knowledge
and large datasets are required to build such networks. The experts would either
handcraft the network structure or at least give strong intuitions to what the
network should look like. The computer will then learn the specific numerical
parameters from the data. However, expert knowledge is not always readily
available and handcrafting is infeasible for large networks with thousands of
nodes. As a result, there has been a lot research toward learning Bayesian
networks [4, 14, 21, 15, 17]. These learning algorithms are unsupervised, in
the sense that the learner does not differentiate between the attributes and
the class variables. The objective is to find the network structure that best
fit the probability distribution of the training data. This is usually done by
employing a heuristic search over the possible network spaces and finding the
highest scoring network. However, many scoring functions do not accurately
measure the goodness of the networks [12]. Moreover, it is proven recently that
in general, identifying high-scoring structures is NP-hard [6]. Thus, we will
concentrate our attentions to two particular types of Bayesian networks that
have known structures: the naive Bayes and the noisy-or models, which are
shown in Figures 2 and 3 respectively. Both models will be described in greater
detail in Section 2.

The reason why these two models are particularly interesting is because
they both have very simple structures but depict almost opposite situations.
Whereas in the naive Bayes model all the attributes are effects of the class, in
the noisy-or model, all the attributes are causes of the class. Of course, in most
real-life scenarios, neither are correct since most likely some attributes would be
causes while the others are effects. Despite their apparent opposite structures,
they have equal expressive powers as classifiers, at least in the case where all
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variables are binary. In other words, given a naive Bayes classifier, it can be
transformed into an equivalent noisy-or classifier. For all possible combinations
of attribute values, the two equivalent classifiers will assign exactly the same
class labels to the same instances. Additionally, both of these classifiers have
the same expressive power as the logistical regression classifier [26, 38]. Despite
their equivalent expressiveness, the three classifiers differ in how well they can
learn from data. Logistical regression usually hold a slight advantage because
it is well studied in statistics and there exist many optimized learning meth-
ods for it. However, Ng and Jordan has shown that these classifiers converge
toward their asymptotic accuracies at different rates [27]. Thus, it is possible
that different classifiers are preferred for learning depending on the dataset size
and the particular problem. This is promising since a careful study of the dif-
ferent learning algorithms of these three classifiers can provide insight to the
strengths and weaknesses of each. Consequently they may be combined for an
even stronger learning algorithm. Alternatively, we might be able to combine
these classifiers to form something that more closely model the actual situation.
For example, the structure in Figure 4 is a combined naive Bayes and noisy-or
classifier.

Another interesting aspect of the comparison between the naive Bayes and
noisy-or classifiers is that they form a Generative-Discriminative pair. A gen-
erative classifier learns estimates of Pr(A | C) and Pr(C) where A is the
attributes, and C is the class. New instances can then be classified using these
estimated probability distributions and Bayes Rule. It is call a generative clas-
sifier because we can use the distribution Pr(A | C) to generate random new
instances conditioned on the class. On the other hand, a discriminative classifier
learns the desired value of Pr(C | A) directly. It is called a discriminative clas-
sifier because the distribution Pr(C | A) directly discriminates the value of the
class for any given instances [27, 26]. There are compelling reasons to prefer the
discriminative model as Vapnik stated that “one should solve the [classification]
problem directly and never solve a more general problem as an intermediate
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Figure 4: Combined naive Bayes and noisy-or classifier

step [such as modeling p(A | C)]” [37]. However, as mentioned earlier, there are
indications that no one classifier is superior in all cases.

The classification problem can be formulated formally as follows: Let A =
{A1, A2, . . . , An} be the set of attributes describing the instances and C the
class label. The goal is to build a classifier that will assign any new instances
with the attributes a to class c such that Pr(c | a) is maximized. In general,
classifiers are trained on pre-classified instances, usually meaning someone hand
labeled the class values for each instance. Due to the difficulty of collecting data
and privacy issues though, oftentimes these records have missing data. Since in
some cases a large number of instances will have missing values, it is not feasible
to simply prune the incomplete records. Instead, learning algorithms have to
find a way to deal with these missing attributes. After the classifiers are built,
they are then tested on new instances to see if their classifications match the
actual class of those instances. The performance of a classifier is usually based
on its misclassification rate, or how often it assigns an incorrect class label to
a class. This is important because it is the main reason why simple models
such as naive Bayes and noisy-or networks can be competitive as classifiers even
though they do not approximate the probability distributions of the data well
in general [9, 34].

With sufficient background information and a clear statement of the problem,
we will dive in full details of the classifiers (naive Bayes, noisy-or, and logistic
regression) in section 2. We will follow that up with a mathematical derivations
of the equivalent expressiveness of the classifiers in section 3. In section 4, we
will discuss the different learning methods for each classifiers and how they
compare with each other, including an experiment and the results. Section 5
will be a brief discussion about Ordered Decision Diagrams (ODDs) and how
they figure in the picture of classifiers. Finally, we wrap everything up in section
6 with some discussions about future work.
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2 Classifiers

2.1 Naive Bayes Network Classifier

The naive Bayes classifier is a simple, efficient, and compact classifier that is
still competitive with state-of-the-art classifiers today. An early description
of it can be found in Duda and Hart [10]. The first thing to notice about
naive Bayes network is its simplicity. Unlike Bayesian networks in general,
all of its nodes have at most one parent. This is crucial because the size of
the CPTs grow exponentially with the number of parents. Thus, naive Bayes
network requires a relatively very small number of parameters. More precisely,
the number of parameters of a naive Bayes network is only on the order of the
number of attributes. The compact size is important in many different ways.
First, it is much easier to construct them from training data. In general, naive
Bayes learning converges on the order of log n examples, n being the number
of parameters [27]. Moreover, the small number of parameters allow for easy
storage and fast inference. Finally, we can easily increment the model to include
more attributes without having to learn all the parameters all over again.

Let us now discuss what exactly is a naive Bayes classifier. We already know
it is a Bayesian network with the structure shown in Figure 2. The class variable
is the root of the network while each attribute is a child of the class. Naive
Bayes classifier makes a strong assumption about the relationships between the
attributes. Namely, all the attributes are independent of each other given the
class. In general, to classify an instance, we want to find the value c that will
maximize Pr(c | a). Since we are mainly dealing with binary variables in this
paper, we will define the classifier accordingly. Given a naive Bayes network N
and the threshold t, the output of the classifier is 1 if Pr(C = 0 | A = a) < t
and 0 otherwise.

Naive Bayes classifiers have been used in many different applications, such as
separating housekeeping genes from tissue specific genes [11], filtering spam e-
mails [3], analyzing Arabic text related to fanaticism [1], and probably the most
prominently in text classification [23, 24, 32, 33]. Naive Bayes is so successful
that Rennie called it the “de-facto standard text classifier” [32]. Despite its
shortcomings stemming from its strong independence assumptions, naive Bayes
is competitive with state-of-the-art classifiers such as C4.5 [12]. However, naive
Bayes is not without its critics. The main criticism lies in the fact that naive
Bayes assumes that the attributes are all independent of each other given the
class. This is usually not true since most likely the attributes are related to
each other. For example, consider a classifier for assessing the risk of issuing
a credit card. It would be incorrect to assume that there are no correlations
between age, income, and education level given that the applicant is classified
as a worthy customer.

Nevertheless, naive Bayes performs quite well empirically. This was puzzling
to researchers until Domingos and Pazzani shed some light on it in 1997. They
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found that “although the [naive Bayes’s] probability estimates are only optimal
under quadratic loss if the independence assumption holds, the classifier itself
can be optimal under zero-one loss (misclassification rate) even when this as-
sumption is violated by a wide margin” [9]. Thus, while naive Bayes is poor at
answering queries about probabilities in general, it can excel at the single task
of finding the most likely class value given the attributes. In fact, Domingos
and Pazzani found that the naive Bayes is optimal for learning strongly depen-
dent functions such as conjunctions and disjunctions [9]. This point is proved
further when Rish found in 2001 that “naive Bayes works best in two cases:
completely independent features (as expected) and functionally dependent fea-
tures (which is surprising). Naive Bayes has its worst performance between the
extremes” [34]. Thus, despite its simplicity, naive Bayes seems promising as a
basis for building classifiers. Naive Bayes is usually the preferred classifier when
the dataset is small and there are many attributes [9]. This is because naive
Bayes converges to its asymptotic error quicker [27].

As a result of its empirical success, many researchers have tried to extend the
naive Bayes model. Since the main problem with naive Bayes is that its indepen-
dence assumption often do not occur in natural data, relaxing the independence
assumption of naive Bayes ought to allow for superior text classification [23].
The idea is that after the naive Bayes is constructed, we will refine the model by
adding edges between the attribute nodes to remove some of the independence
assumptions. However, finding the best set of edges to add is an intractable
problem, as it amounts to learning the best Bayesian network in which C is
the root. Thus, Friedman et al proposed an extended naive Bayes model called
the Tree Augmented Naive Bayes (TAN) in which the additional edges form
a tree [12]. The algorithm picks the tree structure that maximizes conditional
mutual information between the nodes of the added edges. Roughly speaking,
conditional mutual information measures how much information one node pro-
vides about the other when the value of a third node is known. Thus, the goal
is to remove the independence assumptions between nodes that are the most
correlated. However, learning tree structured Bayesian network is not trivial
[19, 40]. As a result, in 2004, Peng et al proposed a model in between called the
Chain augmented Naive Bayes (CAN) [31]. Instead of finding a tree structure,
the problem reduces down to the simpler one of finding a chain structure to
augment the network.

While the most intuitive approach to improving the naive Bayes model is to
remove attribute dependencies, it may not necessarily be the right approach [9].
As Rish found in 2001, “the accuracy of naive Bayes is not directly correlated
with the degree of feature dependencies measure as the class-conditional mutual
information between the features. Instead, a better predictor of naive Bayes
accuracy is the amount of information about the class that is lost because of the
independence assumption” [34]. Thus, perhaps connecting the most correlated
nodes as proposed in the TAN and CAN models is not the most effective way
of improving naive Bayes.

Other extensions to the naive Bayes model include processing the data so
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it aligns better with the independence assumptions [33]. Also, in 2003, Yang
et al proposed the LinEar-Equation-based noise-aWare bAYes classifier (LEE-
WAY) that constructs the naive Bayes classifier from noisy datasets [39]. This
is significant because noise is inevitable in real measurements.

While naive Bayes makes strong assumptions that is rarely found in real
data, its empirical success is undeniable. There are indications that these as-
sumptions do not significantly affect the accuracy of the classifier. There are
also numerous attempts to try to improve the naive Bayes framework so that
the model can perform even better while maintaining its advantages. As Domin-
gos and Pazzani summarizes, naive Bayes “has much broader applicability than
previously thought. Since it also has advantage in terms of simplicity, learn-
ing speed, classification speed, storage space and incrementality, its use should
perhaps be considered more often” [9].

2.2 Noisy-or Classifier

Noisy-or classifiers are another type of Bayesian network classifier that reduces
the complexity of the network. For an example of a noisy-or network, see
Figure 3. Introduced by Kim and Pearl in 1983 [20], the noisy-or gate has
become widely used in many different fields, most notably in medical contexts
[35, 25, 28]. However, unlike naive Bayes networks, there has been relatively
little work on applying the noisy-or model to the classification problem. While
naive Bayes is usually a complete network in and of itself, noisy-or gates are
usually embedded in a larger Bayesian network. Despite their different usages,
the two actually have similar characteristics. Noisy-or networks are compact,
fast, and have small numbers of parameters that are linear in the numbers of
nodes. Thus, it shares many of the same advantages the naive Bayes network
has.

There have been a number of different formulations of the noisy-or model,
but the central idea is the same. For an early discussion of the simplest and
most intuitive canonical model, the binary noisy-or gate, see [20, 30]. We know
that the size of the CPT of a node grows exponentially with the size of its
parents. Thus, a node with many parents can be very costly to model. This
is especially true in the noisy-or classifier where all the attributes are parents
of the class variable. The CPT for the node representing the class variable will
have size 2n assuming we have n binary attributes. This is disastrous in many
aspects. First, the storage cost would be very high and in some cases infeasi-
ble. Also, doing inference involving such a node would be very computationally
expensive. Finally, as Friedman and Goldszmidt noted, “learning many para-
meters is a liability, since a large number of parameters requires a large training
set to be assessed reliably” [13]. Noisy-or solves this problem by assuming in-
dependences between the different parents or causes. In essence, the noisy-or
model approximates the CPT for the common effect by using an OR function.
This is an acceptable approximation in cases where the different causes are all
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each individually sufficient to produce the effect and their ability to produce
the effect is not affected by the presence of the other causes. That explains the
“or” part of the noisy-or. So where does the “noisy” part come from? Since the
OR function is deterministic, it renders the node fairly trivial. If any one of the
causes is present, then the effect has to be present, and only when no causes
are present is the effect absent. Since this does not happen in most situations
we want to model, we need to introduce noise to the model for it to be able to
accommodate more complex scenarios. With noise, each cause only produces
the effect with a certain probability.

Henrion later extended the noisy-or model for situations where the effect is
present even when all of its causes are absent [18]. The extended model, the
leaky noisy-or gate, is applicable to situations where a model does not capture all
possible causes. Arguably, almost all situations encountered in practice belong
to this class. The model introduces an additional parameter called the leak
probability, which is the combined effect of all causes not in the network. Diez
later proposed an alternative way to formulate the leaky noisy-or gate [8]. The
two proposals differ in how they define their parameters. In Henrion’s model,
the probabilities for each cause to produce the effect is a combined influence
of the cause in question and the leak. On the other hand, Diez explicitly refer
to the mechanism between the cause in question and the effect with the leak
absent. For learning from data though, Henrion’s model seems more useful since
in all observed instances the leak is always present by definition.

Some other extensions of the noisy-or model include the introduction of
multi-valued variables [18, 8] as well as nodes that include multiple outcomes
[36, 8]. In these models, the variables are no longer binary. Rather, their values
represent the degree of intensity. The degree of the outcome is a maximum of
the degrees produced by the causes. Thus, this model of interaction could also
be called a noisy-max. Heckerman went further and introduced independence of
causal influence (ICI) [16, 38]. In an ICI model, the function need not to be an
OR any more. Examples include noisy-and, noisy-max, noisy-min, noisy-add,
etc. Causal independence is a collection of conditional independence assertions
and functional relationships that are often appropriate to apply to the represen-
tation of the uncertain interactions between cause and effect. Its use can greatly
simplify probability assessment as well as probabilistic inference [16]. Srinivas
also described a slightly less general from of causal independence [36].

In this paper, we will follow the ICI model as our formulation for the noisy-or
classifier. In an ICI classifier, each attribute Ai, i = 1, . . . , n has a child A′

i that
represents the result of applying the noise. Variables A′

i, I = 1, . . . , n are parents
of the class variable C. Pr(C | A′) represents a deterministic function f that
assigns to each combination of values (a′1, . . . , a

′
k) a class c. Following Srinivas

[36], we can represent an ICI model using the Bayesian network structure in
Figure 5. Since we are dealing with binary noisy-or classifiers, the function f will
be an OR. Thus, whenever any A′

i is 1, then C = 1. The classification rule will
be the same as for the naive Bayes classifier. Namely, given a noisy-or network
N and the threshold t, the output of the classifier is 1 if Pr(C = 0 | A = a) < t
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and 0 otherwise.

Noisy-or model is useful in many different ways other than being a classifier.
It is a natural way to model situations where there many causes for a common
effect. Consequently, noisy-or is often employed in medical diagnosis [35, 25,
28] because normally a variety of diseases can all cause the same symptoms.
Moreover, the situation mostly satisfies the two conditions pearl set out for
using the noisy-or model: each cause is sufficient for producing the effect and
the ability of each cause being sufficient is independent of all the other cause
[30]. Any disease by itself is usually enough to cause the observed symptom and
the diseases do not interfere with each other. Onisko et al tested the noisy-or
model on HEPAR II, a model for diagnosis of liver disorders and observed a 6-
10% increase in diagnostic accuracy [28]. Noisy-or is also applied when there are
a small number of learning samples. Since noisy-or greatly reduces the number
of parameters that need to be learned, it makes the resulting network more
reliable [28, 13].

As mentioned earlier, there has been relatively little literature on noisy-
or classifiers. Thus, its performance as a classifier remains to be investigated.
However, since it is a discriminative classifier that has the same expressive power
as naive Bayes, one would expect it to perform better, at least in the limit case.
Regardless, a deeper investigation into noisy-or classifiers could provide insight
into how to improve the other types of classifiers.

2.3 Logistic Regression

Logistic regression, or sometimes called logistic discrimination [2], has long been
a tool for the statistics community. It is a statistical regression model for binary
dependent variables. It attempts to learn functions of the form f : X → Y . In
the context of our classification problem, it attempts to learn Pr(C | A). Since
it is learning the posterior distribution directly, it is a discriminative classifier.
Although we are not focusing our attention on logistic regression in this paper,
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we will use it in our derivations in the next section. Moreover, it comes up often
in the literature in discussion about comparing different classifiers [27, 38, 26].
The fundamental assumption of logistic regression is that the logit, or the log-
likelihood ratio, is assumed to be linear:

log
Pr(C = 0 | A = a)

1− Pr(C = 0 | A = a)
= β0 +

∑
j

βj · aj = β0 +
∑

j:aj=1

βj (1)

Typically, β0 = β′
0 + log Pr(C=0)

Pr(C=1) . We can rewrite (1) as

Pr(C = 0 | A = a) =
exp(β0 +

∑
j:aj=1 βj)

1 + exp(β0 +
∑

j:aj=1 βj)
(2)

We also know that

Pr(C = 1 | A = a) =
1

1 + exp(β0 +
∑

j:aj=1 βj)
(3)

Since these two probabilities have to add up to 1. For the classification task,
we want to assign an instance with a class value c that maximizes Pr(c | a). In
other words, we will assign an instance to C = 1 if

Pr(C = 1 | a) > Pr(C = 0 | a) (4)

We can rewirte condition (4),

Pr(C = 0 | a)
Pr(C = 1 | a)

< 1 (5)

log
Pr(C = 0 | A = a)

1− Pr(C = 0 | A = a)
< 0 (6)

By substituting our first assumption (1), we have

β0 +
∑

j:aj=1

βj < 0 (7)

As we will see in the next section, naive Bayes, noisy-or, and logistic regression
are all equivalent as classifiers in the sense that given any one of the classifiers,
we can construct the other two classifiers that classify every possible instance in
the same way. Nevertheless, logistic regression is a powerful tool because it ben-
efits from the many tools available in statistics. In practice, logistic regression
can be improved upon by regularization techniques such as “shrinking the para-
meters via the L1 constraint, imposing a margin constraint in the separable case,
or various forms of averaging” [27]. Also, logistic regressions are not bound to
the Bayesian network assumptions as tightly as the other two classifiers. Given
data that disobeys the assumption, the conditional likelihood maximization al-
gorithm for logistic regression will adjust its parameters to fit the data [26].
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However, such adjustments and the before mentioned regularization techniques
can be viewed as changing the model class. Thus, this does not contradict with
our claim that the three classifiers have equivalent expressive powers. On the
other hand, their abilities to learn from data do vary and thus provide different
results depending on the data. Ng and Jordan provide an in-depth study of the
comparison between logistic regression and naive Bayes [27].

3 Expressiveness

There are two dimensions to consider when evaluating a classifier. The first is
its expressive power, or how flexible is the model in representing the relation-
ship between the attributes and the class. On one extreme would be a general
Bayesian network which could represent any probabilistic relationship between
the variables. On the other hand would be naive Bayes which impose strong
independence assumptions. The second dimension to consider is the classifier’s
ability to learn from data. We will first tackle the issue of expressiveness in
this section. As stated before, naive Bayes, noisy-or, and logistic regression
classifiers all have the same expressive power. They are all linear classifiers. In
the binary case, this means they define a hyperplane over the attribute space
and separates it into two halves. Having equivalent expressive power means
that they will induce the same classifiers in the limit as the training sample size
approaches infinity.

First we will review the defintions for our classifiers.

Definition 3.1 (Naive Bayes classifier). Given a naive Bayes network N , and
the threshold t, the naive Bayes classifier F t

N is defined as follows:

F t
N =

{
1 if Pr(C = 0 | A = a) < t;
0 otherwise.

The network N consists of the parameters Pr(C) and Pr(Ai | C).

Definition 3.2 (Noisy-or classifier). Given a noisy-or network N , and the
threshold t, the noisy-or classifier F t

N is defined as follows:

F t
N =

{
1 if Pr(C = 0 | A = a) < t;
0 otherwise.

The network N consists of the parameters Pr(Ai) and Pr(A′
i | Ai). However,

the prior Pr(Ai) is not as important because typically the values of the attributes
are given.

Definition 3.3 (Logistic regression classifier). Given the set of parameters β,
the logistic regression classifier Fβ is defined as follows:

Fβ =
{

1 if β0 +
∑

j:aj=1 βj < 0;
0 otherwise.
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3.1 Correspondence between noisy-or and logistic regres-
sion

The derivation for this correspondence is detailed in Vomlel’s paper [38]. Thus,
we will only provide the end results here.

3.1.1 From noisy-or to logistic regression

Given a noisy-or classifier, we can define an equivalent logistic regression clas-
sifier with the following parameters:

βj = log
Pr(A′

j = 0 | Aj = 1)
Pr(A′

j = 0 | Aj = 0)
(8)

β0 =
∑

j

log Pr(A′
j = 0 | Aj = 0)− log t (9)

3.1.2 From logistic regression to noisy-or

Given a logistic regression classifier with the parameters β, we can define an
equivalent noisy-or classifiers with the follwing parameters:

Pr(A′
j = 0 | Aj = aj) =

{
exp(βj)

1+exp(βj)
for aj = 1;

1
1+exp(βj)

for aj = 0.
(10)

t =
1

exp(β0) · (
∏

j(1 + exp(βj)))
(11)

3.2 Correspondence between naive Bayes and logistic re-
gression

3.2.1 From naive Bayes to logistic regression

Given a naive Bayes classifier, the instance is classified to C = 1 when Pr(C =
0 | a) < t. We can rewrite the equation in log-odds space [5]. The condition for
C = 1 would now be:

log O(C = 0 | a) < log(
t

1− t
) (12)

Following Chan et al’s derivation [5], we have

log O(C = 0 | a) = log O(C = 0) +
∑

j

log
Pr(aj | C = 0)
Pr(aj | C = 1)

(13)

And let

fj(aj) = log
Pr(aj | C = 0)
Pr(aj | C = 1)

(14)

(15)
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We can now rewrite condtion (12) further

log O(C = 0) +
∑

j

log
Pr(aj | C = 0)
Pr(aj | C = 1)

< log(
t

1− t
) (16)

log O(C = 0) +
∑

j:aj=0

fj(0) +
∑

j:aj=1

fj(1) < log(
t

1− t
) (17)

log O(C = 0) +
∑

j

fj(0) +
∑

j:aj=1

(fj(1)− fj(0)) < log(
t

1− t
) (18)

log O(C = 0) +
∑

j

fj(0)− log(
t

1− t
) +

∑
j:aj=1

(fj(1)− fj(0)) < 0 (19)

(20)

Thus, we can define an equivalent logistic regression classifier with the following
parameters:

β0 = log O(C = 0) +
∑

j

fj(0)− log(
t

1− t
) (21)

= log O(C = 0) +
∑

j

log
Pr(Aj = 0 | C = 0)
Pr(Aj = 0 | C = 1)

− log(
t

1− t
) (22)

βj = fj(1)− fj(0) (23)

= log
Pr(Aj = 1 | C = 0)
Pr(Aj = 1 | C = 1)

− log
Pr(Aj = 0 | C = 0)
Pr(Aj = 0 | C = 1)

(24)

3.2.2 From logistic regression to naive Bayes

Given a logistic regression classifer, the instance is classified to C = 1 when
β0 +

∑
j:aj=1 βj < 0. Let the parameters of a naive Bayes classifer be defined as

log
Pr(aj | C = 0)
Pr(aj | C = 1)

=
{

βj + log Kj for aj = 1;
log Kj for aj = 0.

(25)

log O(C = 0) = β0 −
∑

j

log Kj (26)

log
t

1− t
= 0 (27)

where Kj are constants whose value depends on βj . We will discuss how to
pick the values for Kj in a bit. We can now rewrite the condition of the logistic
regression classifier.

β0 +
∑

j:aj=1

βj < 0 (28)

β0 −
∑

j

log Kj +
∑

j:aj=0

log Kj +
∑

j:aj=1

(βj + log Kj) < 0 (29)
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log O(C = 0) +
∑

j

log
Pr(aj | C = 0)
Pr(aj | C = 1)

< log
t

1− t
(30)

This is exactly the condition for a naive Bayes classifier (see (16) on how we
transformed the original naive Bayes condition). Thus, the naive Bayes classifier
we defined (31, 32, 33) is equivalent to the logistic regression classifier. Before we
finish though, let’s discuss how to choose the appropriate values for Kj . First,
let’s do some algebra and simply the parameters for the naive Bayes classifier
(31, 32) into the following:

Pr(Aj = 0 | C = 0) =
1−Kj · expβj

1− expβj
(31)

Pr(Aj = 0 | C = 1) =
1−Kj · expβj

Kj −Kj · expβj
(32)

Pr(C = 0) =
expβ0

expβ0 +
∏

j Kj
(33)

t = 0.5 (34)

We need to ensure all of these probabilities have values between 0 and 1. Thus,
we impose the following conditions on Kj :

If expβj > 1 then we choose Kj such that Kj < 1 and Kj · expβj > 1. (35)
If expβj < 1 then we choose Kj such that Kj > 1 and Kj · expβj < 1. (36)

One possible such value for Kj is 1+exp βj

2·exp βj
. If we plug it back into equations (31,

32, 33, 34), we get:

Pr(Aj = 0 | C = 0) =
1
2

(37)

Pr(Aj = 0 | C = 1) =
expβj

1 + exp βj
(38)

Pr(C = 0) =
expβ0

expβ0 +
∏

j
1+exp βj

2·exp βj

(39)

t = 0.5 (40)

It’s easy to verifty that these probabilities indeed have values between 0 and 1.
One thing interesting to note is that we have reduced about half the parameters
to constants. Since we can transform any naive Bayes classifier into a logistic
regression classifier then back, this means for any naive Bayes classifier, there is
an equivalent one with only n+1 parameters where n is the number of attributes.
This is perhaps not surprising since logistic regression only has n+1 parameters.
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3.3 Correspondence between naive Bayes and noisy-or

3.3.1 From naive Bayes to noisy-or

We simply combine the results we have derived above. Thus, we first transform
the naive Bayes classifer to a logistic regression classifer (22, 24), and then we
tranform it to a noisy-or classifier (10, 11). Thus, given a naive Bayes classifier
with parameters Pr(C), Pr(Aj |C), and t we can define an equivalent noisy-or
classifer with the following parameters:

Prnoisy(A′
j = 0 | Aj = aj) =


Pr(Aj=1|C=0)·Pr(Aj=0|C=1)

Pr(Aj=1|C=1)·Pr(Aj=0|C=0)+Pr(Aj=1|C=0)·Pr(Aj=1|C=0) for aj = 1;

Pr(Aj=1|C=1)·Pr(Aj=0|C=0)
Pr(Aj=1|C=1)·Pr(Aj=0|C=0)+Pr(Aj=1|C=0)·Pr(Aj=1|C=0) for aj = 0.

(41)

(42)

tnoisy =
1

O(C = 0) ·
∏

j
Pr(Aj=0|C=0)
Pr(Aj=0|C=1) ·

1−t
t ·

∏
j(1 + Pr(Aj=1|C=0)·Pr(Aj=0|C=1)

Pr(Aj=1|C=1)·Pr(Aj=0|C=0) )
(43)

=
1

O(C = 0) · 1−t
t ·

∏
j(

Pr(Aj=0|C=0)
Pr(Aj=0|C=1) + Pr(Aj=1|C=0)

Pr(Aj=1|C=1) )
(44)

=
Pr(C = 1)
Pr(C = 0)

· t

1− t
·
∏
j

(
Pr(Aj = 0 | C = 1)
Pr(Aj = 0 | C = 0)

+
Pr(Aj = 1 | C = 1)
Pr(Aj = 1 | C = 0)

) (45)

3.3.2 From noisy-or to naive Bayes

Similarly, we can derive the transformation the other way. We first transform a
noisy-or classifier into a logistic regression classifier (8, 9), and then into a naive
Bayes classifier (37, 38, 39, 40). Given a noisy-or classifier with parameters
Pr(A′

j | Aj) and t, we can define an equivalent naive Bayes classifier with the
following parameters:

Prnaive(Aj = 0 | C = 0) =
1
2

(46)

Prnaive(Aj = 0 | C = 1) =
Pr(A′

j = 0 | Aj = 1)
Pr(A′

j = 0 | Aj = 0) + Pr(A′
j = 0 | Aj = 1)

(47)

Prnaive(C = 0) =

∏
j(2 · pj01 · pj00)

t ·
∏

j(pj00 + pj01) +
∏

j(2 · pj01 · pj00)
(48)

where

pj00 = Pr(A′
j = 0 | Aj = 0) (49)

pj01 = Pr(A′
j = 0 | Aj = 1) (50)
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4 Learning

4.1 Overview

Having shown the equivalent expressive powers of the classifiers, we will now
deal with the other aspect of evaluating a classifier: its learning ability. At first
glance, one may expect that naive Bayes, noisy-or and logistic regression will
also all be equal in this regard. After all, we can readily transform one type
of classifier into the other two. Thus, theoretically they would all produce the
same classifier if the learning algorithms find the optimal parameters. However,
empirical evidence suggests otherwise. In Vomlel’s experiments, he found lo-
gistic regression to be the best, noisy-or second, and naive Bayes worst when
tested on his selected datasets [38]. The reason for this being that the learning
algorithms differ for the different classifiers. Thus, depending on the particular
training data, they will produce different results.

Learning Bayesian networks are divided into four categories depending on
whether the network structure is known and whether the training data is com-
plete. In the last decade, there has been a lot of work done in this area
[4, 14, 21, 15, 17]. There are two parts to the learning process: learning the
structure and learning the parameters. Of the two, identifying good structures
is much more difficult and is generally NP-hard [6]. Thus, most of the algo-
rithms for learning the structure are iterative. They start out with a simple
network and incrementally add or delete edges to increase the quality of the
network. The problem becomes even more difficult with incomplete data. In
such cases, we have to optimize both the structure and the parameters simul-
taneously. On the other end, we have the simplest case of known structure and
complete data. The goal then is to simply find a set of parameters that will
maximize the likelihood of the data, also known as maximum likelihood para-
meters. With complete data, the problem has a unique solution and the process
involves simple counting and some smoothing.

Unfortunately, in real-life situations, we often do not have complete data
due to the difficulty of collecting data and privacy issues. Moreover, we often
do not know the network structures. This makes learning very hard to do and
very computationally expensive. Thus, to alleviate the problem, we use simple
Bayesian networks such as naive Bayes and noisy-or and try to optimize just
the parameters. This works surprisingly well perhaps because classification is
a small subset of the capability of a general Bayesian network. Since we are
assuming the structure of the networks, the kind of learning we are focusing on
here is with known structure and incomplete data.

Two common methods for dealing with incomplete data include gradient
ascent and the expectation maximization (EM) algorithm. However, neither
is optimal and both can be computationally intensive. Gradient ascent works
by starting out with an initial set of parameters and gradually changing them
based on the gradients in attempt to find the maximum likelihood parameters.
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The algorithm is not optimal since it is only guaranteed to find local maximums.
The EM-algorithm consists of two parts, expectation and maximization as its
name suggests. In the expectation step, we try to complete the data using
the current set of parameters. Each possible value of the missing variable is
assigned a weight based on its probability of occurring. In the maximization
step, we compute the new set of parameters as in the complete data case using
the weighted data we obtained in the previous step. The process continues until
a certain convergence criteria is met. The algorithm was first introduced by
Dempster et al [7]. It was later extended for graphical models by Lauritzen [22].

Of the three classifiers discussed, logistic regression seems to perform the
best overall in practice. However, since it is not a Bayesian network classifier,
we will not dwell on its learning method. Part of the reason why it does so
well is due to the fact that it is a discriminative classifier as opposed to a
generative classifier such as the naive Bayes. Prevailing folk wisdom suggests
that discriminative classifiers produce better results because they have a more
focused task of optimizing only the classification power. Posting queries about
the other variables to a discriminative classifier, however, will often result in
meaningless answers. On the other hand, generative classifiers can be used to
answer questions about correlations between any sets of variables in the model.

Since noisy-or is also a discriminative model, it is expected to perform better
than naive Bayes. However, its learning method is perhaps not as well polished
as the other two classifiers. While noisy-or gates are widely studied and used
in larger networks, its use as a classifier has been relatively unexplored. This
is true especially compared to the many smoothing and optimizing technique
available to statistic regression. Nevertheless, since it is a Bayesian network,
it enjoys many of the advancements that have been made in learning Bayesian
networks.

Although people have long thought that discriminative classifiers are to be
preferred over generative classifiers such as naive Bayes, there are several rea-
sons to consider using a naive Bayes network. Naive Bayes has been shown to
work really well empirically, especially on small datasets with many attributes
[9]. Also, naive Bayes converges to its asymptotic error quicker, in log n time
in general [27]. Finally, its ability to answer other queries is worth considering,
even though it is not relevant to the classification task. Let’s take the example
of credit scoring. The main goal is to decide whether to grant a loan to an ap-
plicant, which is a straightforward classification task. However, understanding
the correlations between the attributes may also help the bank in making other
business decisions. For example, the bank can identify the applicant’s weak
areas and closely monitor them.

4.2 Experiment

We already know that different classifiers excel in different situations. However,
it would be useful to know under exactly which conditions will each classifier
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perform the best. Moreover, understanding their behaviors better can lead to
new classifiers or new learning algorithms that combine their strengths. Thus,
we conducted experiments with the naive Bayes and noisy-or classifiers in at-
tempt to determine how their learning abilities stack up to each other. Logistic
regression is left out because we are mainly concerned with Bayesian network
classifiers and how to improve upon the existing models.

4.2.1 Data

We generate two sets of data to test our classifiers on. One set of data is
generated by a naive Bayes network, the other by a noisy-or network. The
networks are all randomly initialized. The hypothesis is that a naive Bayes
classifier would perform better with data generated by a naive Bayes network,
and vice versa.

Generating data from a naive Bayes network is straightforward since its
structure is conducive to such tasks. We first initialize the prior probability
of the class variable and also the conditional probabilities of the attributes.
We then proceed to produce instances according to those probabilities. The
nice thing about naive Bayes is that we can control the probability of the class
variable easily. Thus, we can ensure there are enough cases for each possible
class value to be trained on.

Generating data from a noisy-or network is slightly trickier. If we simply
initialized the parameters completely randomly as we did in the naive Bayes
network, we would end up with very uneven data. The reason for this is that it
only takes one positive input to the or-gate to make the instance’s class value
to be 1. Thus, with completely random parameters, almost all the instances
produced would belong to class 1. To deal with this issue, we look to real-life
situations where the noisy-or model is applied. One such application is in the
medical field where a noisy-or gate is used to model the relationship between
diseases and symptoms. The diseases are inputs and the symptoms are the
outputs. Normally, only a few inputs would be active. In other words, the
patient usually has one of the diseases, or at most a few of the diseases. Thus,
in our noisy-or network, we limit the prior probabilities of the attributes to a
low probability, scaled by the number of inputs. Also, we limit the probability
of the leak variable as well. If the probability of the leak variable being present
is high, that would mean there are important causes that we are not modeling.
After we initialize the noisy-or network, we generate instances according to those
parameters.

We generated datasets ranging from 10 attributes to 100 attributes. We also
varied the rate of missing data, from complete data to half the data missing.
Notice only the attributes can be missing. An instance without a class label is
essentially useles.
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4.2.2 Learning Methods

To learn the network parameters from the data, we will use the EM-algorithm
for both the naive Bayes and the noisy-or classifiers. As described earlier, the
algorithm consists of two parts. In the E-step we consider all possible comple-
tions of the data and assign each complete a weight. Then in the M-step, we
update the parameters based on these weighted data.

We will first describe the M-step, or the only step required in cases of com-
plete data. Given the dataset D and current parameters θ, we update the
parameters as follows:

θ′x|u =
∑

d∈D Prθ(xu | d)∑
d∈D Prθ(u | d)

More specifically, for naive Bayes, we set

Pr′(Ai = ai | C = c) =
∑

d∈D Pr(Ai = ai, C = c | d)∑
d∈D Pr(C = c | d)

For complete data, computing these quantities reduce down to simple counting.
For incompleted data, we would first perform the E-step of the algorithm. In
this case, it’s also fairly simple since

Pr(Ai = ai, C = c | d) =
{

Pr(Ai = ai | C = c) if C = c in d;
0 otherwise.

where Pr(Ai = ai | C = c) is simply the current parameter value.

For noisy-or, we set the parameters to be

Pr′(A′
i = a′i | Ai = ai) =

∑
d∈D Pr(A′

i = a′i, Ai = ai | d)∑
d∈D Pr(Ai = ai | d)

This is slightly more difficult to compute since the values of A′
i are not observed.

For the complete data case, we have

Pr(A′
i = a′i, Ai = ai | d) =

{
Pr(A′

i = a′i | d) if Ai = ai in d;
0 otherwise.

From Vomlel’s results [38], we have

Pr(A′
i = 0 | d) =


1 if c = 0 in d;
Pr(A′

i=0|Ai=ai)−
∏

j
Pr(A′

j=0|Aj=aj)

1−
∏

j
Pr(A′

j
=0|Aj=aj)

otherwise.

The value of Pr(A′
i = 1 | d) is also defined since Pr(A′

i = 0 | d) + Pr(A′
i = 1 |

d) = 1

For the incomplete data case, we perform the E-step by multiplying the
above defined values by the prior probabilities of the attributes. Thus, we have,

Pr(A′
i = a′i, Ai = ai | d) = Pr(A′

i = a′i | d) ∗ Pr(Ai = ai)
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4.2.3 Results

The results of the experiments are shown in Table 1 and Table 2 attached at
the end of the paper. The numbers in the tables represent the accuracy rates
defined as follows:

accuracy =
# correct classifications

# test cases

We ran each scenario (# attributes and % data missing) 10 times and averaged
the results. Each time we use a different, independently initialized network to
generate the data. The classifiers are trained on 5000 instances and then tested
on another 5000 new instances.

The results are more or less what we would expect to see. For the data
generated by naive Bayes networks, the naive Bayes classifier clearly performs
better than the noisy-or classifier in all cases (Table 1). The naive Bayes classi-
fier is so effective in certain cases that it reaches 100% accuracy. This is perhaps
not surprising since its weakness lies in its strong independence assumptions.
However, if the data indeed satisfies those independence conditions, as is the
case here, then the naive Bayes classifier becomes very accurate. In comparing
naive Bayes to logistic regression, Mitchell stated,

Naive Bayes is a learning algorithm with greater bias, but lower
variance, than Logistic Regression. If this bias is appropriate given
the actual data, Naive Bayes will be preferred. Otherwise, Logistic
Regression will be preferred. [26]

Also worth noting is that naive Bayes does better with more attributes and
less missing data. This follows our intuition that if we model more of the at-
tributes and have more complete data, we can produce better classifiers. Noisy-
or classifier, on the other hand, does not seem to benefit from these character-
istics. Its performance indicate no clear patterns.

Interpreting the results of learning from the data generated by noisy-or net-
works is slightly more difficult (Table 2). Overall, noisy-or classifier performs
better, but not much better than the naive Bayes classifier. The difference is
the greatest when there are only 10 attributes. As the number of attributes
increase, the difference in accuracies between the two classifiers diminish.

There are several possible explanations. First, as we noted before, naive
Bayes classifiers tend to excel at problems with many attributes. Thus, it is
possible that the naive Bayes classifier closes the gap as the number of attributes
increase. Another possibility is that the learning algorithm we used for noisy-or
is not really suitable. As discussed in Section 4.2.2, the EM algorithm is more
complicated when applied to the noisy-or model. Finally, it is possible that the
data generated by the noisy-or networks are simply very difficult to learn. As a
result, both classifiers perform equally poorly. This last possibility is supported
by the fact that it is difficult to generate good, balanced data from a noisy-or
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network as noted in Section 4.2.1. We had to restrict the parameters of the
networks to even get data that do not all have class value 1.

Noisy-or classifiers exhibit a preference for fewer attributes and more missing
data when learning from noisy-or data. Interesting enough, naive Bayes also
shows an improvement in performance at higher data missing rate, except in
the case of complete data. This is possibly related to the way the data is
generated. Since we had to limit the prior probabilities based on the number of
attributes, having many attributes also means the probability of each attribute
occurring is small. This in turn affects learning because we would have fewer
instances of where a particular attribute is present. Consequently, the 5000
training samples we used may have become insufficient for scenarios with many
attributes. On the other hand, the apparent preferences for higher data missing
rate is perhaps more a reflection of the distribution of the data. In some cases
the classifier do so poorly with the data that they classify all the instances to
one class. Thus, having a distribution that is lopsided will seemingly boost the
accuracies of the classifiers in those situations.

4.3 Discussion

Our experiments have reaffirmed the notion that different classifier indeed excel
on different datasets despite their equivalent expressive powers. Specifically,
we have shown that naive Bayes and noisy-or classifiers perform better when
the data is more aligned with its independence assumptions. However, we need
stricter criteria to determine which classifier will be better. For most problems,
the data is more complicated with some of the attributes being causes while the
other being effects of the class value. This prompts us to wonder about using
hybrid structures such as the one shown in Figure 4. Although building networks
that more closely resemble the actual relationships between the variables would
probably result in better classifiers, it is costly. Thus, we need to explore the
trade-offs between the complexity of the network and the quality of the classifier.

Various extensions to the naive Bayes model already exist, such as TAN [12]
and CAN [31]. However, it is not clear whether the improvement in performance
is enough to justify the higher computing cost. Ultimately, we would like to
build classifiers with just the right balance of speed and accuracy. Thus, we
want to find network structures as simple as possible yet still achieve the level
of accuracy we desire.

There is still room for improvement concerning the learning methods as well.
Clearly, none of the existing algorithms are optimal. Since the three classifiers
we discussed can be transformed into one another, their best classifiers would
be equivalent. Thus, if we can learn the optimal parameters in one model,
we should get a classifier that outperforms all the other classifiers in the other
models as well. Of the three classifiers we discussed, logistic regression probably
has the most polished learning method, and noisy-or the least polished.
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Figure 6: Ordered Decision Diagram

5 Ordered Decision Diagram

In this section we discuss another type of representation for classifiers, Ordered
Decision Diagram (ODD).

Definition 5.1. An Ordered Decision Diagram is a directed, acyclic graph
with a single root that is defined with respect to a specific variable ordering
(X1, . . . , Xn). The leaves of the graph, or the terminal nodes, are called sinks.
Each sink represents a possible value of the output. In the case of classifiers, the
sinks correspond to the class values. The rest of the nodes are associated with
a specific variable Xi and labeled accordingly. For a classifier, these variables
are the attributes. Note that there can be many nodes associated with a single
variable. The only restriction is that in any directed paths, if a node Xi comes
before a node Xj, then i < j. For a node Xi, the outgoing edges represent the
possible values of Xi, or ranges of values in the case of continuous variables.
Note that every possible value must be associated with exactly one edge.

An ODD is used as a classifier as follows. Given an instance with attributes
A = A1, . . . , An, the ODD determines its class value by traversing the graph
starting at its root. For every node Ai it encounters, it follows the edge ai out
of the node if Ai = ai in the instance. When it eventually reaches a sink ci, the
instance is assigned the class value ci. An example of an ODD classifier can be
seen in Figure 6.

Transforming classifiers into ODDs allow us to efficiently perform several
operations. Given two ODDs D and D′ with sizes s and s′, respectively, we can
test their equivalence in O(s+s′) time and conjoin or disjoin them in O(ss′) time.
Other operations include counting how many instances are mapped to each class
and testing whether a classifier with binary class value can be reduced down to
a conjunction or disjunction of the attributes.

Testing for equivalence is especially helpful in our studies of classifiers. It
allows us to directly compare two seemingly different networks and see whether
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they define the same classifying function. ODDs also allow us to determine
the similarity between two classifiers. By joining two ODDs together and then
doing counting, we can determine on how many instances the two classifiers
agree on. Moreover, these operations let us examine how much effect certain
modifications to the networks have on the classifiers. This is important if we
want to find a good balance between network complexity and performance.

Chan et al have already shown how to efficiently convert a naive Bayes clas-
sifier into an ODD [5]. Since we can transform noisy-or and logistic regression
classifiers into a naive Bayes classifier, we can readily transform those into ODDs
as well. Thus, we have a complete framework for comparing the performances
of each of the three classifiers.

6 Conclusion

In this paper we explored the problem of classification and couple Bayesian
network classifiers that are used to solve the problem. Namely, we looked into
naive Bayes and noisy-or classifiers. We compared them on two dimensions,
their expressive powers and their learning abilities. We also compared them
against a third classifier, the logistic regression classifier. While all three have
equivalent expressiveness, they differ on how well they learn from different sets of
data. As one would expect, naive Bayes and noisy-or classifiers perform better
when the data is aligned with their independence assumptions. The issue of
converging speed is also an issue too. While logistic regression may produce
superior classifiers given enough training, naive Bayes may be preferred when
there are few training samples. Thus, so far it seems that each classifier would
have its own niche.

While we acknowledge the fact that different classifiers may be preferred
under different circumstances, we do not have a clear set of criteria for deter-
mining which classifier should be used. There remains much work to be done
in this area to assess how and perhaps why one type of classifier outperforms
another on a certain dataset. Also, once we gain a better understanding of the
relationship between the characteristic of the data and the performance of the
classifiers, we may be able to build new classifiers that combine the strong areas
of each of the classifiers.

One way to enhance the quality of the Bayesian network classifiers is to in-
troduce more complex structures that model the actual relationships between
the variables more realistically. However, finding a good structure is often dif-
ficult and costly. Moreover, it is unclear how much increase in accuracy do
we gain by doing so. Ideally, we would like to have classifiers that have simple
structures but have high accuracies. To work toward that goal, we need to figure
out what changes to the network structures are the most effective in improving
the classifier’s performance.

To facilitate such studies of comparisons between classifiers, we look at
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ODDs. They provide efficient ways to test how similar two classifiers are. Thus,
we can quantify the effects certain changes to the networks have on the clas-
sifiers. This will allow us to identify those modifications that have the most
impact.

Ultimately, we want to build classifiers that are fast in terms of classification
and learning speed, as well as have high accuracy. Perhaps such classifiers won’t
be built upon Bayesian networks at all. Nevertheless, it is unlikely that there will
be one type of classifier that will always be superior in all situations. Depending
on the nature of the data, the number of training samples available, and the level
of accuracy we desire, different types of classifiers may be preferred. Thus, it is
important for us to closely study and compare the different types of classifiers.
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Missing data rate
# attributes 0.0 0.1 0.2 0.3 0.4 0.5

10 naive Bayes 0.9381 0.9426 0.9214 0.9217 0.8840 0.8414
noisy-OR 0.7624 0.8176 0.7746 0.8695 0.7044 0.5772

20 naive Bayes 0.9947 0.9830 0.9765 0.9439 0.9430 0.9371
noisy-OR 0.6841 0.8249 0.7153 0.7412 0.7741 0.8337

30 naive Bayes 0.9958 0.9963 0.9894 0.9812 0.9711 0.9656
noisy-OR 0.7889 0.7870 0.6766 0.8273 0.7822 0.8247

40 naive Bayes 0.9986 0.9989 0.9955 0.9905 0.9831 0.9685
noisy-OR 0.7678 0.6994 0.7561 0.7609 0.7262 0.7988

50 naive Bayes 0.9997 0.9993 0.9993 0.9971 0.9929 0.9844
noisy-OR 0.8091 0.6979 0.7465 0.8354 0.7899 0.6892

60 naive Bayes 0.9998 0.9996 0.9994 0.9992 0.9953 0.9892
noisy-OR 0.7296 0.7797 0.6630 0.7669 0.7525 0.7884

70 naive Bayes 0.9999 0.9999 0.9994 0.9992 0.9971 0.9943
noisy-OR 0.7316 0.7177 0.6855 0.7581 0.6768 0.6920

80 naive Bayes 1.0 0.9999 0.9997 0.9997 0.9980 0.9962
noisy-OR 0.6909 0.7475 0.8084 0.7021 0.8351 0.7367

90 naive Bayes 0.9998 0.9998 0.9999 0.9998 0.9992 0.9977
noisy-OR 0.7287 0.7928 0.7630 0.8166 0.7140 0.7968

100 naive Bayes 0.9998 1.0 1.0 0.9999 0.9996 0.9987
noisy-OR 0.728 0.8467 0.8061 0.7471 0.7302 0.8324

Table 1: Learning from data generated by a naive Bayes network
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Missing data rate
# attributes 0.0 0.1 0.2 0.3 0.4 0.5

10 naive Bayes 0.8987 0.8214 0.8006 0.8396 0.8687 0.8853
noisy-OR 0.9045 0.9028 0.9079 0.9231 0.9353 0.9408

20 naive Bayes 0.8915 0.7877 0.8009 0.8354 0.8623 0.8844
noisy-OR 0.7856 0.8112 0.8304 0.8913 0.9165 0.9198

30 naive Bayes 0.8963 0.7838 0.8157 0.8305 0.8519 0.8756
noisy-OR 0.7671 0.7853 0.8143 0.8327 0.8549 0.8784

40 naive Bayes 0.8929 0.7975 0.8164 0.8301 0.8557 0.8824
noisy-OR 0.7708 0.7954 0.8151 0.8277 0.8558 0.8836

50 naive Bayes 0.8942 0.7872 0.8193 0.8325 0.8548 0.8791
noisy-OR 0.7684 0.7917 0.8248 0.8363 0.8551 0.8806

60 naive Bayes 0.8934 0.7878 0.8101 0.8404 0.8548 0.8748
noisy-OR 0.7636 0.7963 0.8066 0.8420 0.8543 0.8724

70 naive Bayes 0.8891 0.7943 0.8138 0.8354 0.8546 0.8825
noisy-OR 0.7757 0.7927 0.8162 0.8349 0.8571 0.8824

80 naive Bayes 0.8924 0.7911 0.8300 0.8320 0.8502 0.8873
noisy-OR 0.7689 0.7921 0.8252 0.8348 0.8541 0.8860

90 naive Bayes 0.8868 0.7926 0.8189 0.8433 0.8579 0.8808
noisy-OR 0.7788 0.7941 0.8189 0.8435 0.8567 0.8808

100 naive Bayes 0.8856 0.7876 0.8162 0.8370 0.8581 0.8754
noisy-OR 0.7750 0.7894 0.8151 0.8371 0.8564 0.8760

Table 2: Learning from data generated by a noisy-or network
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